Lecture 3: Aggregate network properties Noshir Contractor

Jane S. & William J. White Professor of Behavioral Sciences

Professor of Ind. Eng. & Mgmt. Sciences, McCormick School of Engineering Professor of Communication Studies, School of Communication & Professor of Management & Organizations, Kellogg School of Management, Director, Science of Networks in Communities (SONIC) Research Laboratory **nosh@northwestern.edu**

NORTHWESTERN UNIVERSITY

Degree distributions

 What's the probability P(k) of randomly selecting a node with degree k in this network?

Power laws

- Large networks can have degree distributions that span several orders of magnitude
- Many real world networks follow a power law degree distribution
 - Scale free networks, 80/20 rule, Pareto principle, Zipf's Law, long tail, etc.

 $P(k) \sim k^{-\gamma}$

- How do you generate scale free networks?
 - Check back in week 7!

Deg distributions across networks

Network	Size	$\langle k \rangle$	κ
WWW	325,729	4.51	900
WWW	4×10^{7}	7	
WWW	2×10^{8}	7.5	4,000
WWW, site	260,000		
Internet, domain*	3,015 - 4,389	3.42 - 3.76	30 - 40
Internet, router*	3,888	2.57	30
Internet, router*	150,000	2.66	60
Movie actors*	212, 250	28.78	900
Coauthors, SPIRES*	56,627	173	1,100
Coauthors, neuro.*	209,293	11.54	400
Coauthors, math*	70,975	3.9	120
Sexual contacts*	2810		
Metabolic, E. coli	778	7.4	110
Protein, S. cerev.*	1870	2.39	
Ythan estuary*	134	8.7	35
Silwood park*	154	4.75	27
Citation	783, 339	8.57	
Phone-call	53×10^{6}	3.16	
Words, cooccurence*	460,902	70.13	
Words, synonyms*	22,311	13.48	

ℓ_{real}	ℓ_{rand}	ℓ_{pow}	Reference	
11.2	8.32	4.77	Albert, Jeong, Barabási 1999	
			Kumar et al. 1999	
16	8.85	7.61	Broder et al. 2000	
			Huberman, Adamic 2000	
4	6.3	5.2	Faloutsos 1999	
12.15	8.75	7.67	Faloutsos 1999	
11	12.8	7.47	Govindan 2000	
4.54	3.65	4.01	Barabási, Albert 1999	
4	2.12	1.95	Newman 2001b,c	
6	5.01	3.86	Barabási <i>et al.</i> 2001	
9.5	8.2	6.53	Barabási et al. 2001	
			Liljeros et al. 2001	
3.2	3.32	2.89	Jeong et al. 2000	
			Mason et al. 2000	
2.43	2.26	1.71	Montoya, Solé 2000	
3.4	3.23	2	Montoya, Solé 2000	
			Redner 1998	
			Aiello et al. 2000	
			Cancho, Solé 2001	
			Yook et al. 2001	

Path length

- <u>Path length</u>: number of links between two nodes (degrees of separation)
 - BACDE = 4
- <u>Geodesic</u>: Shortest path length between two nodes
 - BAE = 2
- <u>Eccentricity</u>: Each actor's longest geodesic
- <u>**Diameter</u>**: Network's largest geodesic\eccenctricity</u>
 - BAEFGH\BACJIH
- <u>Shortcut</u>: paths that bypass clusters
 - CJ saves traveling across 6 links

Density, clustering, centralization

- Density
 - Observed edges in network / maximum possible edges
- Clustering
 - Count ties among alters, removing ego and ties to ego
 - Observed ties in actor's ego network / maximum possible ties in ego network
- Network centralization
 - Variation in individual actors' centralities
 - High centralization when few actors possess higher centrality than average
 - Low centralization when actors all have similar centralities

Paths & clustering across networks

Reference Adamic 1999 Yook et al. 2001a, Pastor-Satorras et al. 2 Watts, Strogatz 199 Newman 2001a,b Newman 2001a,b Newman 2001a,b,c
Adamic 1999 Yook et al. 2001a, Pastor-Satorras et al. 2 Watts, Strogatz 199 Newman 2001a,b Newman 2001a,b
Yook et al. 2001a, Pastor-Satorras et al. 2 Watts, Strogatz 1999 Newman 2001a,b Newman 2001a,b
Pastor-Satorras et al. 2 Watts, Strogatz 1998 Newman 2001a,b Newman 2001a,b,c
Watts, Strogatz 1998 Newman 2001a,b Newman 2001a,b Newman 2001a,b,c
Newman 2001a,b Newman 2001a,b Newman 2001a,b,c
Newman 2001a,b Newman 2001a,b,c
Newman 2001a,b,c
Newman 2001a,b
Barabási et al. 2001
Barabási et al. 2001
Wagner, Fell 2000
Wagner, Fell 2000
Montoya, Solé 2000
Montoya, Solé 2000
Cancho, Solé 2001
Yook et al. 2001
Watts, Strogatz 1998
Watts, Strogatz 1998

Small worlds

- **Paradox**: Individuals within the network are highly clustered but also have small average geodesics to other members
- Randomly rewiring a fraction of links on a regularly-clustered network drastically shortens average eccentricity
- Random rewiring, however still maintains high clustering over several orders of magnitude

Ego network

- <u>N-step ego network</u>: network of all actors and their shared ties, N steps away from ego
 - E's 1-step ego network
 - E's 2-step ego network
 - E's 3-step ego network
 - E's 4-step ego network

Components and cliques

- Connected component
 - Every actor is reachable from every other actor
- Giant component
 - Largest connected component
- Subgraphs
 - Subsets of actors that are disconnected from each other
- Clique
 - Subset of maximally-connected actors
- Clans, plexes, cores, & more!
 - See week 4!

Reciprocity, transitivity, & closure

Structural holes & Brokerage

- Structural holes
 - Places where people are unconnected in a network
- Brokers
 - Actors who exploit structural holes
 - Gain access to information, power to filter, timing for competitive advantage, and ability to refer other actors
 - Difficult entrée, requires accurate maps of relationships in each groups, costly to maintain, high potential to be undercut

Equivalence & Closure

• Structural equivalence

- One actor having the same set of relations as another actor (siblings)
- {A,B,C}, {G,H,I}

Regular equivalence

- One actor occupying a similar position as another actor (division managers)
- {A,B,C,G,H,I}, {D,F}

Closure

- Process of generating highly equivalent positions
- Greater trust, high reciprocity and exchange
- Increasing redundancy, greater constraint

